Principal Investigator | ||
---|---|---|
Prof. Michael Krämer | RWTH Aachen University | |
Prof. Tilman Plehn | Heidelberg University |
In this project we will investigate a wide range of deep-learning paradigms and algorithms for anomaly searches at the LHC. Semi-supervised, weakly-supervised, or unsupervised training can be used to achieve sensitivity to weak or complex New Physics signals (anomalies) in a largely model-independent way. These concepts will be developed for QCD jets, i.e., for analysis objects that are present in huge quantities at the LHC and whose dynamics is well understood within the Standard Model. We will systematically explore various machine learning architectures, such as autoencoders, normalising flows and transformer networks, trained using different jet-data formats, ranging from images to point clouds and higher-level observables such as energy flow polynomials.
P3H-24-080 |
---|
Title: Semi-visible jets, energy-based models, and self-supervision |
Type: Paper |
Authors: Luigi Favaro, Michael Krämer, Tanmoy Modak, Tilman Plehn, Jan Rüschkamp |
arXiv:2312.03067 |
Info: |
P3H-23-109 |
---|
Title: Semi-visible jets, energy-based models, and self-supervision |
Type: Paper |
Authors: L. Favaro, M. Krämer, T. Modak, T. Plehn and J. Rüschkamp |
arXiv: 2312.03067 |
Info: |
P3H-23-052 |
---|
Title: Anomalies, representations, and self-supervision |
Type: Paper |
Authors: B. M. Dillon, L. Favaro, F. Feiden, T. Modak and T. Plehn |
arXiv: 2301.04660 |
Info: SciPost Phys. Core 7, 056 (2024) |
P3H-22-140 |
---|
Title: Performance versus resilience in modern quark-gluon tagging |
Type: Paper |
Authors: A. Butter, B. M. Dillon, T. Plehn and L. Vogel |
arXiv: 2212.10493 |
Info: Published in SciPost Phys. Core 6, 085 (2023) |
P3H-22-135 |
---|
Title: What's anomalous in LHC jets? |
Type: Paper |
Authors: T. Buss, B. M. Dillon, T. Finke, M. Kr\“amer, A. Morandini, A. M\”uck, I. Oleksiyuk and T. Plehn |
arXiv: 2202.00686 |
Info: Published in SciPost Phys. 15, no.4, 168 (2023) |
P3H-22-116 |
---|
Title: A normalized autoencoder for LHC triggers |
Type: Paper |
Authors: B. M. Dillon, L. Favaro, T. Plehn, P. Sorrenson and M. Krämer |
arXiv: 2206.14225 |
Info: Published in SciPost Phys. Core 6, 074 (2023) |
P3H-21-109 |
---|
Title: Symmetries, safety, and self-supervision |
Type: Paper |
Authors: B. M. Dillon, G. Kasieczka, H. Olischlager, T. Plehn, P. Sorrenson and L. Vogel |
arXiv:2108.04253 |
Info: Published in SciPost Phys. 12, no.6, 188 (2022) |
P3H-21-107 |
---|
Title: Unsupervised hadronic SUEP at the LHC |
Type: Paper |
Authors: J. Barron, D. Curtin, G. Kasieczka, T. Plehn and A. Spourdalakis |
arXiv:2107.12379 |
Info: Published in JHEP 12, 129 (2021) |
P3H-21-106 |
---|
Title: Better Latent Spaces for Better Autoencoders |
Type: Paper |
Authors: B. M. Dillon, T. Plehn, C. Sauer and P. Sorrenson |
arXiv:2104.08291 |
Info: Published in SciPost Phys. 11, 061 (2021) |
P3H-20-025 |
---|
Title: Casting a graph net to catch dark showers |
Type: Paper |
Authors: Elias Bernreuther, Thorben Finke, Felix Kahlhoefer, Michael Krämer and Alexander Mück |
arXiv: 2006.08639 |
Info:Published in: SciPost Phys. 10 (2021) 046 |