Recent Progress in inclusive $\boldsymbol{b} \rightarrow \boldsymbol{c}$ semileptonic transitions

Thomas Mannel

Theoretische Physik I Universität Siegen

Particle Physics Phenomenology after the Higgs Discovery

Portoroz 2019, April 17 ${ }^{\text {th }}$, 2019

Contents

(2) Part I: Alternative $V_{c b}$ Determination
(3) Part II: Preliminary Results on $\alpha_{s} \wedge_{\mathrm{QCD}}^{3} / m_{b}^{3}$

Introduction

Charged Current Semileptonics are under scrutiny:

- Tensions between inclusive and exclusive determinations of $V_{x b}$
- Tensions between semitauonic and semimuonic (exclusive) decays

Exclusive $V_{c b}$ has shifted recently

- CLN form factor parametrization is too simple
- More sophisticated BGL parametriztion

$$
\begin{aligned}
& \left|\mathrm{V}_{\mathrm{cb}}\right|=(42.5 \pm 0.3 \pm 0.7 \pm 0.6) \times 10^{-3} \text { Exclusive }\left|\mathrm{V}_{\mathrm{cb}}\right| \text { (BGL) } \\
& \left|\mathrm{V}_{\mathrm{cb}}\right|=(38.4 \pm 0.2 \pm 0.6 \pm 0.6) \times 10^{-3} \text { Exclusive }\left|\mathrm{V}_{\mathrm{cb}}\right| \text { (CLN) }
\end{aligned}
$$

Tension in exclusive Semi-tauonics:

Bildschirmfoto

New BELLE 2019

Present talk: Focus on $b \rightarrow c \ell \bar{\nu}$

- $V_{c b}$ is one of the best known CKM matrix elements
- Inclusive determination:
- Based on the Heavy Quark Expansion (HQE)
- Close to the 1% theoretical uncertainty
- Exclusive determination
- Based on Lattice determinations of Form Factors
- Simulations with finite quark masses
- Not yet at the 1% level of uncertainties

Recent data indicate that there is no $V_{c b}$ problem

Part I

Alternative $V_{c b}$ Determination

ThM, K. K. Vos: arXiv:1802.09409
M. Fael, ThM, K. K. Vos: arXiv:1812.07472

Inclusive $V_{c b}$ Determination

- Standard tool: Heavy Quark Expansion
- Structure of the expansion (@ tree):

$$
\begin{aligned}
d \Gamma= & d \Gamma_{0}+\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{2} d \Gamma_{2}+\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{3} d \Gamma_{3}+\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{4} d \Gamma_{4} \\
& +d \Gamma_{5}\left(a_{0}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{5}+a_{2}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{3}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{c}}\right)^{2}\right) \\
& +\ldots+d \Gamma_{7}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{3}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{c}}\right)^{4}
\end{aligned}
$$

- Power counting $m_{c}^{2} \sim \Lambda_{\mathrm{QCD}} m_{b}$
- Γ_{0} is the decay of a free quark ("Parton Model")
- Γ_{1} vanishes due to Heavy Quark Symmetries
- Γ_{2} is expressed in terms of two parameters

$$
\begin{aligned}
& 2 M_{H} \mu_{\pi}^{2}=-\langle H(v)| \bar{Q}_{v}(i D)^{2} Q_{v}|H(v)\rangle \\
& 2 M_{H} \mu_{G}^{2}=\langle H(v)| \bar{Q}_{v} \sigma_{\mu \nu}\left(i D^{\mu}\right)\left(i D^{\nu}\right) Q_{v}|H(v)\rangle
\end{aligned}
$$

μ_{π} : Kinetic energy and μ_{G} : Chromomagnetic moment

- Γ_{3} two more parameters

$$
\begin{aligned}
2 M_{H} \rho_{D}^{3} & =-\langle H(v)| \bar{Q}_{v}\left(i D_{\mu}\right)(i v D)\left(i D^{\mu}\right) Q_{v}|H(v)\rangle \\
2 M_{H} \rho_{L S}^{3} & =\langle H(v)| \bar{Q}_{v} \sigma_{\mu \nu}\left(i D^{\mu}\right)(i v D)\left(i D^{\nu}\right) Q_{v}|H(v)\rangle
\end{aligned}
$$

ρ_{D} : Darwin Term and $\rho_{\llcorner S}$: Spin-Orbit Term

- Γ_{4} and Γ_{5} have been computed Bigi, Uraltes, Turczyk, TM, ...

Inclusive $V_{c b}$ Determination

- Based on the HQE for the inclusive rates and for moments of spectra
- (Cut) moments of the charged lepton energy, hadronic energy and hadronic invariant mass spectra
- Extract the HQE parameters from this data
- Obtain $V_{c b}$ from the total semileptonic rate

Problem: Number of HQE parameters in higher orders!

- 4 up to $1 / m^{3}$
- 13 up to $1 / m^{4}$ (tree level)
- 31 up to order $1 / m^{5}$ (tree level)
- Factorial Proliferation

Start from the operator:

$$
R(q)=\int d^{4} x e^{i q x} T\left[\bar{Q}(x) \Gamma q(x) \bar{q}(0) \Gamma^{\dagger} Q(0)\right]
$$

and replace $Q(x)=\exp (-i m(v \cdot x)) Q_{v}(x)$

$$
R(S)=\int d^{4} x e^{-i S x} T\left[\bar{Q}_{v}(x) \Gamma q(x) \bar{q}(0) \Gamma^{\dagger} Q_{v}(0)\right]
$$

with $S=m v-q$.
These expressions are independent of v !

Perform the OPE \longrightarrow HQE

$$
\begin{aligned}
R(S) & =\sum_{n=0}^{\infty}\left[C_{\mu_{1} \cdots \mu_{n}}^{(n)}(S)\right]_{\alpha \beta} \bar{Q}_{v, \alpha}\left(i D_{\mu_{1}} \cdots i D_{\mu_{n}}\right) Q_{v, \beta} \\
& =\sum_{n=0}^{\infty} C_{\mu_{1} \cdots \mu_{n}}^{(n)}(S) \otimes \bar{Q}_{v}\left(i D_{\mu_{1}} \cdots i D_{\mu_{n}}\right) Q_{v}
\end{aligned}
$$

These expressions are still invariant under reparametrization of v : (as long as the sum is not truncated)

$$
\delta_{\mathrm{RP}} v_{\mu}=\delta v_{\mu} \quad \text { with } \quad v \cdot \delta v=0
$$

$\delta_{\mathrm{RP}} i D_{\mu}=-m \delta v_{\mu}$
$\delta_{\mathrm{RP}} Q_{v}(x)=i m(x \cdot \delta v) Q_{v}(x)$ in particular $\quad \delta_{\mathrm{RP}} Q_{v}(0)=0$.

The RP connects different orders in $1 / m$, which yields the master relation between the coefficients $n=0,1,2, \ldots$

$$
\delta_{\mathrm{RP}} C_{\mu_{1} \cdots \mu_{n}}^{(n)}=m \delta v^{\alpha}\left(C_{\alpha \mu_{1} \cdots \mu_{n}}^{(n+1)}+C_{\mu_{1} \alpha \mu_{2} \cdots \mu_{n}}^{(n+1)}+\cdots+C_{\mu_{1} \cdots \mu_{n} \alpha}^{(n+1)}\right)
$$

Use these coefficients, integrate over phase space, get a total rate $\Gamma=\operatorname{Im}\langle B| R|B\rangle=\operatorname{Im}\langle R\rangle$
The coeffcients of the OPE will depend only on v

$$
R=\sum_{n=0}^{\infty} c_{\mu_{1} \cdots \mu_{n}}^{(n)}(v) \otimes \bar{Q}_{v}\left(i D_{\mu_{1}} \cdots i D_{\mu_{n}}\right) Q_{v}
$$

and satisfy the master relation between different orders in the HQE

Making use of RPI ...

- RPI is a consequence of Lorentz invariance of QCD
- RPI is an exact symmetry:
the relations must hold to all order in α_{s}
- Resummation of towers of terms from different orders
- For Lorentz invariant observables:
- The master relations are identical for all observables
- "Rigid" relations between coefficients
- Reduction of HQE parameters due to RPI

How does this happen? A Toy example without gluons Look at the partonic result for the rate

$$
\begin{aligned}
& R(p)=R\left(p^{2}\right)=R\left((m v+k)^{2}\right)=R\left(m^{2}+2 m(v k)+k^{2}\right) \\
& =R\left(m^{2}\right)+R^{\prime}\left(m^{2}\right)\left(2 m(v k)+k^{2}\right)+\frac{1}{2} R^{\prime \prime}\left(m^{2}\right)\left(2 m(v k)+k^{2}\right)^{2} \\
& =R\left(m^{2}\right)
\end{aligned}
$$

if there are no gluons: Equation of motion:

$$
\left(2 m(v k)+k^{2}\right) \rightarrow 2 m(i v \partial)+(i \partial)^{2} \rightarrow 0
$$

All the fully symmetrized (zero gluon) contributions are contained in the partonic result

HQE parameters (for the total rate) to $O\left(1 / m^{4}\right)$

$$
\begin{aligned}
& 2 m_{H} \mu_{3}=\langle H(p)| \bar{Q}_{v} Q_{v}|H(p)\rangle=\left\langle\bar{Q}_{v} Q_{v}\right\rangle \\
& 2 m_{H} \mu_{G}=\left\langle\bar{Q}_{v}\left(i D^{\mu}\right)\left(i D^{\nu}\right)\left(-i \sigma_{\mu \nu}\right) Q_{v}\right\rangle \\
& 2 m_{H \rho_{D}}=\left\langle\bar{Q}_{v}\left[\left(i D^{\mu}\right),\left[\left((i v D)+\frac{(i D)^{2}}{2 m}\right),\left(i D_{\mu}\right)\right]\right] Q_{\nu}\right\rangle \\
& 2 m_{H} r_{G}^{4}=\left\langle\bar{Q}_{v}\left[\left(i D_{\mu}\right),\left(i D_{\nu}\right)\right]\left[\left(i D^{\mu}\right),\left(i D^{\nu}\right)\right] Q_{\nu}\right\rangle \\
& 2 m_{H} r_{E}^{4}=\left\langle\bar{Q}_{V}\left[(i v D),\left(i D_{\mu}\right)\right]\left[(i v D),\left(i D^{\mu}\right)\right] Q_{v}\right\rangle \\
& 2 m_{H} S_{B}^{4}=\left\langle\bar{Q}_{\nu}\left[\left(i D_{\mu}\right),\left(i D_{\alpha}\right)\right]\left[\left(i D^{\mu}\right),\left(i D_{\beta}\right)\right]\left(-i \sigma^{\alpha \beta}\right) Q_{\nu}\right\rangle \\
& 2 m_{H} S_{E}^{4}=\left\langle\bar{Q}_{V}\left[(i v D),\left(i D_{\alpha}\right)\right]\left[(i v D),\left(i D_{\beta}\right)\right]\left(-i \sigma^{\alpha \beta}\right) Q_{v}\right\rangle \\
& 2 m_{H} S_{q B}^{4}=\left\langle\bar{Q}_{v}\left[i D_{\mu},\left[i D^{\mu},\left[i D_{\alpha}, i D_{\beta}\right]\right]\right]\left(-i \sigma^{\alpha \beta}\right) Q_{v}\right\rangle
\end{aligned}
$$

- Less that had been identified before
- Depend on the quark mass
- Are expressed NOT in terms of $i D_{\perp}$, rather "full" derivatives
- Can be expressed in terms of full QCD operators via

$$
i v D Q_{v} \rightarrow\left(i v D+\frac{(i D)^{2}}{m}\right) Q_{v}=\frac{1}{2 m}\left((i D)^{2}-m^{2}\right) Q
$$

Thus

$$
\begin{aligned}
2 m_{H} \mu_{3} & =\langle\bar{Q} Q\rangle \\
2 m_{H} \mu_{G} & =\left\langle\bar{Q}\left(i D^{\mu}\right)\left(i D^{\nu}\right)\left(-i \sigma_{\mu \nu}\right) Q\right\rangle \\
2 m_{H} \rho_{D} & =\frac{1}{2 m}\left\langle\bar{Q}\left[\left(i D^{\mu}\right),\left[(i D)^{2},\left(i D_{\mu}\right)\right]\right] Q\right\rangle
\end{aligned}
$$

Example 1: $b \rightarrow \boldsymbol{s} \gamma\left(O_{7}\right.$ contribution only)

$$
\begin{aligned}
& \Gamma_{b \rightarrow s \gamma}=\frac{\lambda^{2} m_{b}^{3}}{4 \pi}\left[\mu_{3}-\frac{2}{m_{b}^{2}} \mu_{G}^{2}-\frac{10 \rho_{D}^{3}}{3 m_{b}^{3}}\right. \\
& \left.\quad-\frac{1}{3 m_{b}^{4}}\left(4 r_{G}^{4}+4 r_{E}^{4}+\frac{1}{4} s_{q B}^{4}-4 s_{E}^{4}\right)+O\left(1 / m_{b}^{5}\right)\right]
\end{aligned}
$$

Example 2: $b \rightarrow c \ell \bar{\nu}\left(\rho=m_{c}^{2} / m_{b}^{2}\right)$

$$
\begin{aligned}
\frac{\Gamma}{\Gamma_{0}} & =\mu_{3} z(\rho)-2 \frac{\mu_{G}^{2}}{m_{b}^{2}}(\rho-1)^{4}+d(\rho) \frac{\tilde{\rho}_{D}^{3}}{m_{b}^{3}}+\frac{2}{3}(-1+\rho)^{3}(1+5 \rho) \frac{s_{B}^{4}}{m_{b}^{4}} \\
& -\frac{8}{9} \frac{r_{E}^{4}}{m_{b}^{4}}\left(2+9 \rho^{2}-20 \rho^{3}+9 \rho^{4}+6 \log \rho\right) \\
& +\frac{4}{9} \frac{r_{G}^{4}}{m_{b}^{4}}\left(16-21 \rho+9 \rho^{2}-7 \rho^{3}+3 \rho^{4}+12 \log \rho\right) \\
& +\frac{1}{9} \frac{s_{E}^{4}}{m_{b}^{4}}\left(50-72 \rho+40 \rho^{3}-18 \rho^{4}+24 \log \rho\right) \\
& +\frac{1}{36} \frac{s_{q B}^{4}}{m_{b}^{4}}\left(-25+48 \rho-36 \rho^{2}+16 \rho^{3}-3 \rho^{4}-12 \log \rho\right)+\mathcal{O}\left(1 / m_{b}^{5}\right)
\end{aligned}
$$

Differential Rates and Moments

Define generalized moments with weight function w :
$\langle M[w]\rangle=\int \frac{d^{4} q}{(2 \pi)^{4}} \widetilde{d k} \widetilde{d k^{\prime}} w\left(v, k, k^{\prime}\right)\langle R(s)\rangle L\left(k, k^{\prime}\right)(2 \pi)^{4} \delta^{4}\left(q-k-k^{\prime}\right)$
which have an OPE in term of the "operator kernel"

$$
M[w]=\sum_{n=0}^{\infty} a_{\mu_{1} \cdots \mu_{n}}^{(n)} \otimes \bar{b}_{v}\left(i D_{\mu_{1}} \ldots i D_{\mu_{n}}\right) b_{v}
$$

If the weight function is RPI (i.e. is independent of v)

$$
\delta_{\mathrm{RP}} w\left(v, k, k^{\prime}\right)=0
$$

the coefficients $a^{(n)}$ of the operator kernel satisfy the same "rigid" relations as the total rates. Thus they depend on the same reduced set of HQE parameters.

For the case of $b \rightarrow c$ semileptonics, the weight function

$$
w\left(v, k, k^{\prime}\right)=\delta\left(q^{2}-\left(k+k^{\prime}\right)^{2}\right)
$$

satisfies this: The leptonic invariant mass spectrum will depend on the reduced set of HQE parameters This thus also holds for moments:

$$
\frac{1}{\Gamma_{0}} \int d \hat{q}^{2}\left(\hat{q}^{2}\right)^{n} \frac{d \Gamma}{d \hat{q}^{2}}
$$

and for cut moments, as long as the cut is Lorentz invariant, e.g.

$$
\frac{1}{\Gamma_{0}} \int_{q_{\mathrm{cut}}^{\hat{2}}} d \hat{q}^{2}\left(\hat{q}^{2}\right)^{n} \frac{d \Gamma}{d \hat{q}^{2}}
$$

In the massless limit:

$$
\begin{align*}
\mathcal{Q}_{1} & =\frac{3}{10} \mu_{3}-\frac{7}{5} \frac{\mu_{G}^{2}}{m_{b}^{2}}+\frac{\tilde{\rho}_{D}^{3}}{m_{b}^{3}}(19+8 \log \rho)-\frac{r_{E}^{4}}{m_{b}^{4}}\left(\frac{1292}{45}+\frac{40}{3} \log \rho\right)-\frac{s_{B}^{4}}{m_{b}^{4}}(8+2 \log \rho) \\
& +\frac{13}{120} \frac{s_{q B}^{4}}{m_{b}^{4}}+\frac{s_{E}^{4}}{m_{b}^{4}}\left(\frac{63}{5}+4 \log \rho\right)+\frac{r_{G}^{4}}{m_{b}^{4}}\left(\frac{827}{45}+\frac{22}{3} \log \rho\right), \tag{4.10}\\
\mathcal{Q}_{2} & =\frac{2}{15} \mu_{3}-\frac{16}{15} \frac{\mu_{G}^{2}}{m_{b}^{2}}+\frac{\tilde{\rho}_{D}^{3}}{m_{b}^{3}}\left(\frac{358}{15}+8 \log \rho\right)-\frac{r_{E}^{4}}{m_{b}^{4}}\left(\frac{2888}{45}+\frac{64}{3} \log \rho\right)-\frac{s_{B}^{4}}{m_{b}^{4}}\left(\frac{259}{15}+4 \log \rho\right) \\
& +\frac{s_{q B}^{4}}{m_{b}^{4}}\left(\frac{251}{180}+\frac{1}{3} \log \rho\right)+\frac{s_{E}^{4}}{m_{b}^{4}}\left(\frac{908}{45}+\frac{16}{3} \log \rho\right)+\frac{r_{G}^{4}}{m_{b}^{4}}\left(\frac{1373}{45}+\frac{28}{3} \log \rho\right), \tag{4.11}
\end{align*}
$$

etc.

NB.: In the massless limit one need to include also four quark operators, and $\log \rho=\log \left(\mu^{2} / m_{b}^{2}\right)$, the μ dependence is compensated by the four quark operators We have computed the full expression (for finite ρ) for all Q_{n}, as well as for the spectrum $d \Gamma /\left(d q^{2}\right)$.

Cut Moments

Implementing a q^{2} cut:

expression for the cut moments are available!

Conclusion on Part I

- $V_{c b}$ may be determined with a smaller number of independent HQE parameters
- Strategy is the same as before, but based on a different set of observables
- Perspective for a data-driven analysis up to $1 / m_{b}^{4}$

Part II

Preliminary Results on $\alpha_{s} \wedge_{\mathrm{QCD}}^{3} / m_{b}^{3}$

ThM, A. A. Pivovarov: SI-HEP-2018-36, arXiv:1903.xxxxx

Status of the $b \rightarrow c$ semileptonic HQE Calculation

$$
\Gamma=\Gamma_{0}\left(C_{0}(\rho)\left[1+\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}\right]+C_{G}(\rho) \frac{\mu_{G}^{2}}{2 m_{b}^{2}}+C_{r D}(\rho) \frac{\rho_{D}^{3}}{6 m_{b}^{3}}+\cdots\right)
$$

- Tree level terms up to and including $1 / m_{b}^{5}$ known
- $\mathcal{O}\left(\alpha_{s}\right)$ and full $\mathcal{O}\left(\alpha_{s}^{2}\right)$ for the partonic rate known
- $\mathcal{O}\left(\alpha_{s}\right)$ for the $\mu_{\pi}^{2} / m_{b}^{2}$ and μ_{G}^{2} / m_{b}^{2} is known
- QCD inspired modelling for the HQE matrix elements
- In the pipeline:
- $\mathcal{O}\left(\alpha_{S}\right)$ for the ρ_{D} / m_{b}^{3} and $\rho_{L S} / m_{b}^{3}$
- Relations among the coefficients from RPI

Some technical remarks

$$
\begin{aligned}
& \tilde{\mathcal{T}}=c_{0} \mathcal{O}_{0}+C_{v} \frac{\mathcal{O}_{v}}{m_{b}}+C_{\pi} \frac{\mathcal{O}_{\pi}}{2 m_{b}^{2}}+C_{G} \frac{\mathcal{O}_{G}}{2 m_{b}^{2}}+C_{D} \frac{\mathcal{O}_{D}}{2 m_{b}^{3}} \\
& \mathcal{O}_{0}=\bar{h}_{v} h_{v} \quad \mathcal{O}_{v}=\bar{h}_{v} v \pi h_{v} \quad \mathcal{O}_{\pi}=\bar{h}_{v} \pi_{\perp}^{2} h_{v} \\
& \mathcal{O}_{G}=\bar{h}_{v} \frac{1}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right] \pi_{\perp}^{\mu} \pi_{\perp}^{\nu} h_{v} \quad \mathcal{O}_{D}=\bar{h}_{v}\left[\pi_{\perp}^{\mu},\left[\pi_{\perp}^{\mu}, \pi v\right]\right] h_{v}
\end{aligned}
$$

- Compute the three-loop Feynman Diagrams
- Perform the renormalization
... a few subtleties ...
(a) Rewrite

$$
\bar{b} y b=\mathcal{O}_{0}+\tilde{C}_{\pi} \frac{\mathcal{O}_{\pi}}{2 m_{b}^{2}}+\tilde{C}_{G} \frac{\mathcal{O}_{G}}{2 m_{b}^{2}}+\tilde{C}_{D} \frac{\mathcal{O}_{D}}{2 m_{b}^{3}}+O\left(\Lambda_{Q C D}^{4} / m_{b}^{4}\right)
$$

(b) Renormalization:

- Heavy Quark Fields (on-shell renomalization)
- Charm mass in the MS scheme
- Renormalization of ρ_{D} in $\overline{\mathrm{MS}}$
- Mixing with time-ordered products like

$$
(-i) \int d^{4} x \mathrm{~T}\left[\mathcal{L}_{\mathrm{HQET}}(x) \mathcal{O}_{\pi}\right]
$$

All poles cancel ... (still have to check hiss)

Result (preliminary!)

We have the analytic result for $C_{r D}$
Numerically we have ($m_{c}^{2} / m_{b}^{2}=0.07, \alpha_{s}\left(m_{b}\right)=0.2$)

$$
\begin{aligned}
C_{r D} & =-57.1588+\frac{\alpha_{s}}{4 \pi}\left(-56.5941 C_{A}+446.793 C_{F}\right) \\
& =-57.1588+\frac{\alpha_{s}}{4 \pi}(425.942) \\
& =-57.1588\left(1-\frac{\alpha_{s}}{4 \pi} 7.4519 \ldots\right) \\
& =-57.1588(1-0.12)
\end{aligned}
$$

- $\rho_{D}=\rho_{D}\left(m_{b}\right)$
- Leading order has a sizeable coefficient
- QCD corrections have the expected size.
- Impact on $V_{c b}$ will be small but visible

Conclusion on Part II

- $\alpha_{s} \wedge_{\mathrm{CCD}}^{3} / m_{b}^{3}$ is almost completed for the total rate
- We can also compute moments of kinematic distributions
- We will not have the full phase space distributions, so we cannot implement an electron energy cut
- Can we use RPI to obtain the coefficient of ρ_{Ls} ?

Overall Conclusions

Inclusive $V_{c b}$ is getting more and more precise:

- The problem exclusive vs inclusive seems to disappear
- Subtle problems will arise once we want to increase the precision further:
- Convergence of the HQE
- Duality Violations
- α_{s}^{3} for the partonic rate
- ...

