Flavoured dark matter beyond Minimal Flavour Violation

Monika Blanke

Dark Matter models with *t*-channel mediators @ LHC LHC DM WG public meeting April 26, 2019 – CERN

Flavoured dark matter

Unknown DM properties

- coupling to SM particles?
- single particle or entire sector?
- analogy to ordinary SM matter

➤ flavoured?

Assumption:

dark matter carries flavour and comes in multiple copies

Flavoured DM beyond MFV

Agrawal, MB, Gemmler (2014) MB, Kast (2017) MB, Das, Kast (2017) Jubb, Kirk, Lenz (2017) Chen, Huang, Takhistov (2015)

➤ New coupling to quarks:

- q_i SM quarks
- χ_j DM particle, flavoured
- ϕ coloured scalar mediator
- λ coupling matrix

Flavoured dark matter beyond MFV

- in general, DM quark coupling matrix λ_{ij} is a new source of flavour and CP violation
- flavour symmetry extended to

 χ_i ϕ q_j

 $G_{\text{flavour}} = U(3)_q \times U(3)_u \times U(3)_d \times \frac{U(3)_{\chi}}{U(3)_{\chi}}$

Dark Minimal Flavour Violation hypothesis > The DM quark coupling matrix λ_{ij} constitutes the only new source of flavour and CP violation.

- minimal step beyond MFV limit, but vastly changed phenomenology
 ➤ DM and mediator couple to all quark generations
- DM stability still ensured by flavour symmetry

Agrawal, MB, Gemmler (2014)

Simplified DMFV models

different simplified models possible, depending on coupling structure

down-quark DMFV AGRAWAL, MB, GEMMLER (2014)
 DM interacts with right-handed down quarks

 $\lambda_{ij}\bar{d}_{Ri}\chi_j\phi$

up-quark DMFV MB, KAST (2017); JUBB, KIRK, LENZ (2017)
 DM interacts with right-handed up quarks

 $\lambda_{ij}\bar{u}_{Ri}\chi_j\phi$

Ieft-handed DMFV DM interacts with left-handed guark doublets

 $\lambda_{ij} \bar{Q}_{Li} \chi_j \Phi$

model parameters: masses m_{χ} , m_{ϕ} ; coupling matrix λ (9 param.)

MB, DAS, KAST (2017)

Down-quark DMFV pheno in a nutshell

AGRAWAL, MB, GEMMLER (2014)

- K and B_{d,s} oscillation constraints imply very non-generic structure for coupling matrix λ ➤ small effects in rare meson decays
- bottom-flavoured DM phenomenologically preferred

Agrawal, Batell, Hooper, Lin (2014)

• mediator mass constrained from LHC (b) squark and monojet searches

 direct detection constraints require cancellation between various contributions ➤ xenophobic DM
 FENG, KUMAR, SANFORD (2013)

Up-quark DMFV pheno in a nutshell

MB, Kast (2017)

- no contribution to K and B decays, but constraints from D^0 mixing
- mediator mass constrained from LHC stop and squark searches
- new signature $tc + \not\!\!\!E_T$, c. f. flavour-violating SUSY

MB, Guidice, Paradisi, Perez, Zupan (2013); Chakraborty et al. (2018)

- with top-flavoured DM, Z-penguin contribution becomes relevant for direct detection ➤ different cancellation pattern
- for future experiments, cancellation not sufficiently effective for all xenon isotopes
 - \succ upper bound on coupling
 - Iower bound on DM mass

Left-handed DMFV pheno in a nutshell

MB, DAS, KAST (2017)

- DM coupling to both up- and down-quarks via doublet mediator
 > non-trivial combination of up- and down-quark models' pheno
- $K \bar{K}$ and $D \bar{D}$ meson mixing constraints require residual approximate U(2) flavour symmetry
- stronger LHC bounds partially counteracted by weaker direct detection limits
 - allowed mass range comparable to up-quark model

Wrap-up

Flavoured dark matter beyond MFV

- variety of possible models, including yet unstudied ones (different spins, more complicated dark sectors etc.)
- rich phenomenology with implications for
 - direct and indirect DM detection experiments
 - LHC searches with MET
 - flavour observables in B, K, D decays (\rightarrow discussion session)

