New Physics in $b \rightarrow c \tau \nu$: Impact of Polarisation Observables and $B_c \rightarrow \tau \nu$

Monika Blanke

LHCb and Belle II Opportunities for Model Builders MITP – January 31, 2019

The $\mathcal{R}(D^{(*)})$ Anomaly

Test of lepton flavour universality in semi-leptonic B decays

$$\mathcal{R}(D^{(*)}) = \frac{\mathsf{BR}(B \to D^{(*)}\tau\nu)}{\mathsf{BR}(B \to D^{(*)}\ell\nu)} \qquad (\ell = e, \mu)$$

- theoretically clean, as hadronic uncertainties largely cancel in ratio
- measurements by BaBar, Belle, and LHCb (so far R(D*) only)
- 3.8σ tension between HFLAV fit and SM value
- (qualitatively) supported by measurement of $\mathcal{R}(J/\psi)$ (LHCb)

Related Observables

• ratio of baryonic decay rates

$$\mathcal{R}(\Lambda_c) = \frac{\mathsf{BR}(\Lambda_b \to \Lambda_c \tau \nu)}{\mathsf{BR}(\Lambda_b \to \Lambda_c \ell \nu)} \qquad (\ell = e, \mu)$$

• longitudinal D^* polarisation

$$F_L(D^*) = \frac{\Gamma(B \to D_L^* \tau \nu)}{\Gamma(B \to D^* \tau \nu)}$$

 $\begin{array}{l} \mbox{Belle}: \ 0.60 \pm 0.08 \pm 0.035 \\ \mbox{SM}: \ 0.46 \pm 0.04 \end{array}$

• au polarisation asymmetries

$$P_{\tau}(D^{(*)}) = \frac{\Gamma(B \to D^{(*)}\tau^{\lambda = +1/2}\nu) - \Gamma(B \to D^{(*)}\tau^{\lambda = -1/2}\nu)}{\Gamma(B \to D^{(*)}\tau\nu)}$$

• $\mathsf{BR}(B_c o au
u)$ – particularly sensitive to scalar contributions

The Crew

MB, Crivellin, de Boer, Kitahara, Moscati, Nierste, Nišandžić arXiv:1811.09603

Constraints on $\mathsf{BR}(B_c o au u)$ advocated in the literature:

• measured total B_c lifetime > $\mathsf{BR}(B_c o au
u) < 30\%$

Alonso, Grinstein, Martin Camalich (2016)

caveats of au_{B_c} theory prediction

BENEKE, BUCHALLA (1996)

- large m_c dependence (LO QCD calculation, $1.4 \, {\rm GeV} < m_c < 1.6 \, {\rm GeV}$)
- based on heavy quark expansion and non-rel. QCD, but B_c decays dominantly through charm decay

Constraints on $\mathsf{BR}(B_c \to \tau \nu)$ advocated in the literature:

• measured total B_c lifetime > $\mathsf{BR}(B_c o au
u) < 30\%$

ALONSO, GRINSTEIN, MARTIN CAMALICH (2016)

• searches for $B_{u,c} \rightarrow \tau \nu$ at LEP1 > $\mathsf{BR}(B_c \rightarrow \tau \nu) < 10\%$

Akeroyd, Chen (2017)

caveats of theory interpretation

- relies crucially on ratio of $b \rightarrow B_c$ vs. $b \rightarrow B_u$ fragmentation functions
- Tevatron and LHC determinations of f_c/f_u not applicable to LEP (hadron collisions vs. Z peak observables)

Constraints on $\mathsf{BR}(B_c \to \tau \nu)$ advocated in the literature:

• measured total B_c lifetime > $\mathsf{BR}(B_c o au
u) < 30\%$

ALONSO, GRINSTEIN, MARTIN CAMALICH (2016)

• searches for
$$B_{u,c} \rightarrow \tau \nu$$
 at LEP1 > $\mathsf{BR}(B_c \rightarrow \tau \nu) < 10\%$
Akeroyd, Chen (2017)

Critical assessment:

- more refined studies needed
- our conservative bound: ${\sf BR}(B_c o au
 u) < 60\%$

Effective Hamiltonian

New Physics above B meson scale described model-independently by

$$\mathcal{H}_{\text{eff}}^{\text{NP}} = 2\sqrt{2}G_F V_{cb} \left[(1+C_V^L)O_V^L + C_S^R O_S^R + C_S^L O_S^L + C_T O_T \right]$$

with the vector, scalar and tensor operators

$$\begin{aligned} O_V^L &= \left(\bar{c} \gamma^\mu P_L b \right) \left(\bar{\tau} \gamma_\mu P_L \nu_\tau \right) \\ O_S^R &= \left(\bar{c} P_R b \right) \left(\bar{\tau} P_L \nu_\tau \right) \\ O_S^L &= \left(\bar{c} P_L b \right) \left(\bar{\tau} P_L \nu_\tau \right) \\ O_T &= \left(\bar{c} \sigma^{\mu\nu} P_L b \right) \left(\bar{\tau} \sigma_{\mu\nu} P_L \nu_\tau \right) \end{aligned}$$

Note: $(\bar{c}\gamma^{\mu}P_Rb)(\bar{\tau}\gamma_{\mu}P_L\nu_{\tau})$ not generated at dimension-six level in the $SU(2)_L \times U(1)_Y$ -invariant theory

Few Technical Remarks

- assume NP only in τ channel e and μ channels are SM like
- no light right-handed neutrinos
- fit includes $\mathcal{R}(D)$, $\mathcal{R}(D^*)$, $P_{\tau}(D^*)$, $F_L(D^*)$
- fit uses central values of form factors
 - $B \rightarrow D$ vector and scalar form factors from FLAG Working Group
 - $B \rightarrow D^*$: V, A_1, A_2 fit results from HFLAV

 A_0 from Bernlochner et al (2017)

- tensor form factors from Bernlochner et Al (2017)
- full set of baryonic $\Lambda_b \to \Lambda_c$ form factors from Detmold et al. (2015); Datta et al. (2017)
- \bullet values of Wilson coefficients correspond to scale $\mu=1\,{\rm TeV}$

One-Dimensional Scenarios

single particle scenarios

- $\begin{array}{l} {\pmb C}_{\pmb V}^{\pmb L} & \mbox{ left-handed } W' \mbox{ boson} \\ & \mbox{ left-handed } {\rm SU}(2)_L\mbox{-singlet vector leptoquark (LQ)} \\ & \mbox{ scalar } {\rm SU}(2)_L\mbox{-triplet and/or -singlet } {\rm LQ \ (LH \ couplings \ only)} \end{array}$
- $\begin{array}{l} C_{S}^{R} & \text{charged Higgs (2HDM-II at large } \tan \beta) \\ & \text{SU}(2)_{L}\text{-doublet vector } \text{LQ} \end{array}$
- C_S^L charged Higgs with generic flavor structure
- $C_S^L = 4C_T$ scalar SU(2)_L-doublet (relation at NP scale, modified by RG effects)

One-Dimensional Fit Results

- best fit for $C_V^L \sim 0.11$
- small impact of $F_L(D^*)$ measurement (solid vs. dashed)
- large impact of $BR(B_c \rightarrow \tau \nu)$ on scalar scenarios

Two-Dimensional Scenarios

single particle scenarios

 $\begin{array}{ll} (C_V^L,\,C_S^L=-4C_T) & {\rm SU}(2)_L\text{-singlet scalar LQ} \\ (C_V^L,\,C_S^R) & {\rm SU}(2)_L\text{-singlet vector LQ} \\ (C_S^R,\,C_S^L) & {\rm charged Higgs} \\ ({\rm Re}[C_S^L=4C_T], & {\rm scalar SU}(2)_L\text{-doublet LQ} \\ {\rm Im}[C_S^L=4C_T]) & {\rm with CP-violating couplings} \end{array}$

Two-Dimensional Fit Results (I)

- good fit for both $(C_V^L, C_S^L = -4C_T)$ and (C_V^L, C_S^R)
- small impact of $BR(B_c \rightarrow \tau \nu)$ constraint

Two-Dimensional Fit Results (II)

• very good fit for (C_S^R, C_S^L) , but only allowed for $BR(B_c \to \tau \nu) < 60\%$ • good fit for $(C_S^L = 4C_T)$, unless $BR(B_c \to \tau \nu) < 10\%$ is imposed

The $\Lambda_b ightarrow \Lambda_c au u$ Sum Rule

From the phenomenological expressions for $\mathcal{R}(D^{(*)})$ and $\mathcal{R}(\Lambda_c)$, we derive an **approximate sum rule**:

$$\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{\rm SM}(\Lambda_c)} \simeq 0.262 \frac{\mathcal{R}(D)}{\mathcal{R}_{\rm SM}(D)} + 0.738 \frac{\mathcal{R}(D^*)}{\mathcal{R}^{\rm SM}(D^*)} + \mathcal{O}(10^{-2})$$

- ➤ enhancement of $\mathcal{R}(D^{(*)})$ implies $\mathcal{R}(\Lambda_c) > \mathcal{R}_{SM}(\Lambda_c) = 0.33 \pm 0.01$
- > model-independent prediction from current $\mathcal{R}(D^{(*)})$ data:

$$\mathcal{R}(\Lambda_c) = 0.41 \pm 0.02_{\mathcal{R}(D^{(*)})} \pm 0.01_{\mathsf{form factors}}$$

 \succ experimental cross-check of $\mathcal{R}(D^{(*)})$ anomaly

Correlations between Polarization Observables (I)

$P_{ au}(D)$ and $P_{ au}(D^*)$

Correlations between Polarization Observables (II)

 $P_{\tau}(D)$ and $F_L(D^*)$

Correlations between Polarization Observables (III)

Summary: What's New in b ightarrow c au u

- > updated 1D and 2D fits, including recent $F_L(D^*)$ measurement
- \succ critical assessment of $B_c \rightarrow \tau \nu$ constraint
- $\succ \Lambda_b \to \Lambda_c \tau \nu$ provides experimental cross-check of $\mathcal{R}(D^{(*)})$ anomaly
- polarisation observables well suited to distinguish among different EFT scenarios >> requires better understanding of form factors in addition to decently precise measurements