Status of New Physics in Lepton Flavour Universality Violating *B* Decays

Monika Blanke

KEK theory seminar February 12, 2019

Flavour in the Standard Model (SM)

• Quark flavour violation described by CKM matrix

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = V_{\mathsf{CKM}} \begin{pmatrix} d\\s\\b \end{pmatrix} = \begin{pmatrix} V_{ud} \ V_{us} \ V_{ub}\\V_{cd} \ V_{cs} \ V_{cb}\\V_{td} \ V_{ts} \ V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

- No flavour violating decays in the SM lepton sector
- Lepton flavour universality only violated by the (small) lepton masses

$$m_e \ll m_\mu \ll m_\tau$$

Overall, this simple picture works very well - but...

Introduction

Recent anomalies in B meson decays

- 3.8σ anomaly in semi-tauonic B decays, exhibiting lepton flavour universality violation
- various consistent $2 3\sigma$ deviations in $b \rightarrow s\mu^+\mu^-$ transitions, leading to a $\sim 5\sigma$ tension in the global fit

Outline

- 1 Status of the $b \rightarrow c \tau \nu$ anomaly
- 2 Semileptonic $b \rightarrow s$ transitions
- 3 A 5D warped Pati-Salam model

b ightarrow c au u – the anomalous trees

The $\mathcal{R}(D^{(*)})$ anomaly

Test of lepton flavour universality in semi-leptonic B decays

$$\mathcal{R}(D^{(*)}) = \frac{\mathsf{BR}(B \to D^{(*)}\tau\nu)}{\mathsf{BR}(B \to D^{(*)}\ell\nu)} \qquad (\ell = e, \mu)$$

- theoretically clean, as hadronic uncertainties largely cancel in ratio
- measurements by BaBar, Belle, and LHCb (so far R(D*) only)
- 3.8σ tension between HFLAV fit and SM value
- (qualitatively) supported by measurement of $\mathcal{R}(J/\psi)$ (LHCb)

Related $b \rightarrow c \tau \nu$ observables

• ratio of baryonic decay rates

$$\mathcal{R}(\Lambda_c) = \frac{\mathsf{BR}(\Lambda_b \to \Lambda_c \tau \nu)}{\mathsf{BR}(\Lambda_b \to \Lambda_c \ell \nu)} \qquad (\ell = e, \mu)$$

• longitudinal D^* polarisation

$$F_L(D^*) = \frac{\Gamma(B \to D_L^* \tau \nu)}{\Gamma(B \to D^* \tau \nu)}$$

Belle : $0.60 \pm 0.08 \pm 0.035$ SM : 0.46 ± 0.04

• au polarisation asymmetries

$$P_{\tau}(D^{(*)}) = \frac{\Gamma(B \to D^{(*)}\tau^{\lambda = +1/2}\nu) - \Gamma(B \to D^{(*)}\tau^{\lambda = -1/2}\nu)}{\Gamma(B \to D^{(*)}\tau\nu)}$$

• $\mathsf{BR}(B_c o au
u)$ – particularly sensitive to scalar contributions

The Crew

MB, Crivellin, de Boer, Kitahara, Moscati, Nierste, Nišandžić arXiv:1811.09603

A closer look at $B_c ightarrow au u$

Constraints on $BR(B_c \rightarrow \tau \nu)$ advocated in the literature:

• measured total B_c lifetime > BR $(B_c \rightarrow \tau \nu) < 30\%$

ALONSO, GRINSTEIN, MARTIN CAMALICH (2016)

caveats of τ_{B_c} theory prediction

BENEKE, BUCHALLA (1996)

- large m_c dependence (LO QCD calculation, $1.4 \, \text{GeV} < m_c < 1.6 \, \text{GeV}$)
- based on heavy quark expansion and non-rel. QCD, but B_c decays dominantly through charm decay

A closer look at $B_c ightarrow au u$

Constraints on $BR(B_c \rightarrow \tau \nu)$ advocated in the literature:

• measured total B_c lifetime > BR $(B_c \rightarrow \tau \nu) < 30\%$

Alonso, Grinstein, Martin Camalich (2016)

• searches for $B_{u,c} \rightarrow \tau \nu$ at LEP1 > **BR** $(B_c \rightarrow \tau \nu) < 10\%$ AKEROYD, CHEN (2017)

caveats of theory interpretation

- relies crucially on ratio of $b \rightarrow B_c$ vs. $b \rightarrow B_u$ fragmentation functions
- Tevatron and LHC determinations of f_c/f_u not applicable to LEP (hadron collisions vs. Z peak observables)

A closer look at $B_c ightarrow au u$

Constraints on $BR(B_c \rightarrow \tau \nu)$ advocated in the literature:

• measured total B_c lifetime > BR $(B_c \rightarrow \tau \nu) < 30\%$

Alonso, Grinstein, Martin Camalich (2016)

• searches for
$$B_{u,c} \rightarrow \tau \nu$$
 at LEP1 > BR $(B_c \rightarrow \tau \nu) < 10\%$
Akeroyd, Chen (201)

Critical assessment:

- more refined studies needed
- our conservative bound: $\mathsf{BR}(B_c \to \tau \nu) < 60\%$

MB, CRIVELLIN, DE BOER, KITAHARA, MOSCATI, NIERSTE, NIŠANDŽIĆ (2018)

Effective Hamiltonian

New Physics above B meson scale described model-independently by

$$\mathcal{H}_{\text{eff}}^{\text{NP}} = 2\sqrt{2}G_F V_{cb} \left[(1+C_V^L)O_V^L + C_S^R O_S^R + C_S^L O_S^L + C_T O_T \right]$$

with the vector, scalar and tensor operators

$$\begin{split} O_V^L &= \left(\bar{c} \gamma^\mu P_L b \right) \left(\bar{\tau} \gamma_\mu P_L \nu_\tau \right) \\ O_S^R &= \left(\bar{c} P_R b \right) \left(\bar{\tau} P_L \nu_\tau \right) \\ O_S^L &= \left(\bar{c} P_L b \right) \left(\bar{\tau} P_L \nu_\tau \right) \\ O_T &= \left(\bar{c} \sigma^{\mu\nu} P_L b \right) \left(\bar{\tau} \sigma_{\mu\nu} P_L \nu_\tau \right) \end{split}$$

Note: $(\bar{c}\gamma^{\mu}P_Rb)(\bar{\tau}\gamma_{\mu}P_L\nu_{\tau})$ not generated at dimension-six level in the $SU(2)_L \times U(1)_Y$ -invariant theory

One-dimensional scenarios

single particle scenarios

- $\begin{array}{l} {\pmb C}_{\pmb V}^{\pmb L} & \mbox{ left-handed } W' \mbox{ boson} \\ & \mbox{ left-handed } {\rm SU}(2)_L\mbox{-singlet vector leptoquark (LQ)} \\ & \mbox{ scalar } {\rm SU}(2)_L\mbox{-triplet and/or -singlet } {\rm LQ \ (LH \ couplings \ only)} \end{array}$
- $\begin{array}{l} C_S^R \\ \text{SU}(2)_L \text{-doublet vector } LQ \end{array}$
- C_S^L charged Higgs with generic flavor structure
- $C_S^L = 4C_T$ scalar SU(2)_L-doublet (relation at NP scale, modified by RG effects)

One-dimensional fit results

MB, CRIVELLIN, DE BOER, KITAHARA, MOSCATI, NIERSTE, NIŠANDŽIĆ (2018)

- best fit for $C_V^L \sim 0.11$
- small impact of $F_L(D^*)$ measurement (solid vs. dashed)
- large impact of $BR(B_c \rightarrow \tau \nu)$ on scalar scenarios

Two-dimensional scenarios

single particle scenarios

 $\begin{array}{ll} (C_V^L,\,C_S^L=-4C_T) & {\rm SU}(2)_L\text{-singlet scalar LQ} \\ (C_V^L,\,C_S^R) & {\rm SU}(2)_L\text{-singlet vector LQ} \\ (C_S^R,\,C_S^L) & {\rm charged Higgs} \\ ({\rm Re}[C_S^L=4C_T], & {\rm scalar SU}(2)_L\text{-doublet LQ} \\ {\rm Im}[C_S^L=4C_T]) & {\rm with CP-violating couplings} \end{array}$

Two-dimensional fit results (I)

MB, CRIVELLIN, DE BOER, KITAHARA, MOSCATI, NIERSTE, NIŠANDŽIĆ (2018)

- good fit for both $(C_V^L,\,C_S^L=-4C_T)$ and $(C_V^L,\,C_S^R)$
- small impact of $BR(B_c \rightarrow \tau \nu)$ constraint

Two-dimensional fit results (II)

MB, CRIVELLIN, DE BOER, KITAHARA, MOSCATI, NIERSTE, NIŠANDŽIĆ (2018)

very good fit for (C^R_S, C^L_S), but only allowed for BR(B_c → τν) < 60%
good fit for (C^L_S = 4C_T), unless BR(B_c → τν) < 10% is imposed

The $\Lambda_b ightarrow \Lambda_c au u$ sum rule

MB, CRIVELLIN, DE BOER, KITAHARA, MOSCATI, NIERSTE, NIŠANDŽIĆ (2018) From the phenomenological expressions for $\mathcal{R}(D^{(*)})$ and $\mathcal{R}(\Lambda_c)$, we derive an **approximate sum rule**:

$$\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{\rm SM}(\Lambda_c)} \simeq 0.262 \frac{\mathcal{R}(D)}{\mathcal{R}_{\rm SM}(D)} + 0.738 \frac{\mathcal{R}(D^*)}{\mathcal{R}^{\rm SM}(D^*)} + \mathcal{O}(10^{-2})$$

enhancement of R(D^(*)) implies R(Λ_c) > R_{SM}(Λ_c) = 0.33 ± 0.01
 model-independent prediction from current R(D^(*)) data:

$$\mathcal{R}(\Lambda_c) = 0.41 \pm 0.02_{\mathcal{R}(D^{(*)})} \pm 0.01_{\mathsf{form\ factors}}$$

> experimental cross-check of $\mathcal{R}(D^{(*)})$ anomaly

Summary: Where do we stand in $b \rightarrow c \tau \nu$?

MB, CRIVELLIN, DE BOER, KITAHARA, MOSCATI, NIERSTE, NIŠANDŽIĆ (2018)

> updated 1D and 2D fits, including recent $F_L(D^*)$ measurement

- 1D: best fit for $C_V^L \neq 0$
- 2D: decent fit for all scenarios
- large impact of $BR(B_c \rightarrow \tau \nu)$ limit on scalar scenarios

 $\succ \Lambda_b \to \Lambda_c \tau \nu$ provides experimental cross-check of $\mathcal{R}(D^{(*)})$ anomaly

[not shown here due to lack of time] polarisation observables well suited to distinguish among different EFT scenarios
 requires better understanding of form factors

$b ightarrow s \mu \mu$ – the anomalous penguins

Semileptonic $b \rightarrow s$ transitions

The $b ightarrow s \mu^+ \mu^-$ transitions and LFU

M. Blanke Status of New Physics in LFUV B Decays

Semileptonic $b \rightarrow s$ transitions

The $b \rightarrow s \mu^+ \mu^-$ transitions and LFU

M. Blanke Status of New Physics in LFUV B Decays

Theoretical description

 $b \to s \ell^+ \ell^-$ and $b \to s \gamma$ transitions described by effective Hamiltonian

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{e^2}{16\pi^2} \sum_i (C_i \mathcal{O}_{\boldsymbol{i}} + C_i' \mathcal{O}_{\boldsymbol{j}}') + h.c.$$

where the operators most sensitive to new physics are

Global analysis

ALTMANNSHOFER, STANGL, STRAUB (2017) see also CAPDEVILA ET AL. (2017)

> consistent fit for $C_9^{\text{NP}} \simeq -1$, non-zero $C_9^{'\text{NP}}$, C_{10}^{NP} possible $\sim 5\sigma$ deviation from SM!

Yet not quite global experimentally

CAPDEVILA ET AL. (2017) see also Altmannshofer, Stangl, Straub (2017)

> dominated by LHCb – we need independent cross-check!

Who ordered that?

Altmannshofer, Straub (2013); Hiller, Schmaltz (2014) Altmannshofer et al. (2014); Altmannshofer, Carena, Crivellin (2016) D'Amico et al. (2017); Di Chiara et al. (2017)

The usual suspects: Z' and leptoquarks

- tree level NP competing with SM one-loop diagrams
- constraints from $B_s \bar{B}_s$ mixing can be accomodated
- potential relation to $(g-2)_{\mu}$ anomaly

Loop induced NP?

Large $C_9^{\sf NP}$ as model-killer

Altmannshofer, Straub (2013)

new contributions to Z penguin (e.g. in the MSSM) don't yield required NP pattern – also no LFU violation

Viable setups

• Z' penguin effect

Bélanger, Delaunay, Westhoff (2015) Kamenik, Soreq, Zupan (2017)

• box contribution Gripaios, Nardecchia, Renner (2015); Arnan et al. (2016)

A combined resolution of the *B* decay anomalies?

- ${\ensuremath{\bullet}}$ several attempts to attribute the B decay anomalies to
 - a common NP origin

BARBIERI, MURPHY, SENIA (2016); CRIVELLIN, MÜLLER, OTA (2017) BECIREVIC, DORSNER, FAJFER, FAROUGHY, KOSNIK, SUMENSARI (2018) DI LUZIO, GRELJO, NARDECCHIA (2017); CALIBBI, CRIVELLIN, LI (2017) BORDONE, CORNELLA, FUENTES-MARTIN, ISIDORI (2017); MARZOCCA (2018) ...

- $SU(2)_L$ singlet vector leptoquark appears most promising:
 - \succ evades stringent constraints from B_s mixing and $b \rightarrow s \nu \bar{\nu}$
 - > B_c life-time under control

Model building challenges

- identify UV origin of such vector LQ
- generate flavour non-universal LQ couplings
- avoid re-introduction of constraints due to additional particles present in UV-complete model

Let's go model-building!

The Pati-Salam vector leptoquark

Prime BSM candidate for simultaneous explanation: $SU(2)_L$ singlet vector leptoquark with LH couplings to fermions

- $\succ\,$ no tree level contributions to $B_s-\bar{B}_s$ mixing and $b\to s\nu\bar{\nu}$ transitions
- > purely left-handed coupling structure favoured by
 - global $b \to s \mu^+ \mu^-$ fits
 - total B_c lifetime
 - $B \rightarrow D \tau \nu$ differential rate

Towards UV-complete model

Vector LQ arising from Pati-Salam gauge group

 $SU(4) \times SU(2)_L \times SU(2)_R$

has the right gauge quantum numbers!

Challenge: flavour non-universal couplings to fermions

PATI, SALAM (1974)

The Crew

MB, CRIVELLIN - PRL 121 (2018) NO.1, 011801

The Crew

MB, CRIVELLIN - PRL 121 (2018) NO.1, 011801

Pati-Salam in the Randall-Sundrum background

Idea:

MB, CRIVELLIN (2018)

embed Pati-Salam model into the 5D Randall-Sundrum space-time

$$ds^2 = e^{-2ky}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dy^2 \qquad 0 \le y \le L$$

RANDALL, SUNDRUM (1999)

- extra space-time coordinate yconfined to interval $0 \le y \le L$, and warped by e^{-2ky} factor
- 4D Kaluza-Klein (KK) decomposition
 - towers of massive KK modes localized near IR brane
 - massless zero modes depending on boundary conditions
 - \succ identified with SM particles

Gauge symmetry breaking pattern

Two step symmetry breaking pattern MB, CRIVELLIN (2018) Pati-Salam gauge symmetry in the 5D bulk, broken by boundary conditions on the UV brane

 $SU(4) \times SU(2)_L \times SU(2)_R \rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y$

- SM Higgs confined to the UV brane induces EW symmetry breaking $SU(2)_L × U(1)_Y → U(1)_{em}$
 - Higgs decoupled from KK modes at IR brane
 - stringent EW precision constraints are evaded
 - Yukawa couplings need to respect SM gauge symmetry only
 - but: usual RS solution to gauge and flavour hierarchy problems lost

Fermion sector

• fermions as 5D bulk fields in complete PS representations

$$\begin{pmatrix} u_L^1 \ u_L^2 \ u_L^3 \ \nu_L \\ d_L^1 \ d_L^2 \ d_L^3 \ \ell_L \end{pmatrix} \sim (4, 2, 1) \qquad \begin{pmatrix} u_R^1 \ u_R^2 \ u_R^3 \ \nu_R \\ d_R^1 \ d_R^2 \ d_R^3 \ \ell_R \end{pmatrix} \sim (4, 1, 2)$$

massless zero modes correspond to SM fermions

 zero mode localization along extra dimension y depends exponentially on 5D bulk mass parameter c = m_{5D}/k
 ➤ non-universal couplings to KK modes

B anomalies require

- hierarchical localization of LH fermions: $c_{L1} > c_{L2} > c_{L3}$
- RH fermions localized at UV brane

The 4D composite dual

AdS/CFT correspondence: dual 4D composite model

- elementary sector with SM gauge group
- elementary Higgs field
- conposite sector with Pati-Salam global symmetry
- left-handed fermions partially composite linear mixing of SM fermions with composite resonances: $0 \sim s_1^{q,\ell} \ll s_2^{q,\ell} \ll s_3^{q,\ell} \sim 1/\sqrt{2}$
- right-handed fermions (mostly) elementary

The 4D composite dual

AdS/CFT correspondence: dual 4D composite model

- elementary sector with SM gauge group
- elementary Higgs field
- conposite sector with Pati-Salam global symmetry
- left-handed fermions partially composite linear mixing of SM fermions with composite resonances: $0 \sim s_1^{q,\ell} \ll s_2^{q,\ell} \ll s_3^{q,\ell} \sim 1/\sqrt{2}$
- right-handed fermions (mostly) elementary

Simplified model: keep only SM fields + lowest-lying KK modes

- $\bullet\,$ common mass scale $M_{\rm KK}$ for all new particles
- massive vector resonances for entire PS gauge group
- massive vectorlike fermions that mix with SM fermions

LHC constraints

strongest constraints from searches for $t\bar{t}$ and $\tau\bar{\tau}$ resonances

Flavour alignment

- \bullet generically, KK modes of gluons, B-L gauge boson and W_L^3 mediate tree level FCNCs
 - \succ reintroduces problematic contributions to meson mixings and $b \to s \nu \bar{\nu}$
- avoided by imposing flavour alignment between elementary-composite mixing (=5D bulk masses) and Y_d

no tree level FCNCs in the down sector

> relevant tree level contribution to $D^0 - \bar{D}^0$ mixing (CKM)

• resulting leptoquark coupling matrix

$$\Gamma_{d_i\ell_j}^{LQ,L} = \frac{ig_s^*}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0\\ 0 & s_2^q s_2^\ell c_\ell & s_2^q s_2^\ell s_\ell\\ 0 & -s_3^q s_3^\ell s_\ell & s_3^q s_3^\ell 2c_\ell \end{pmatrix}_{ij}$$

 $u_i \nu_j$ coupling includes additional CKM rotation

Important tree level effects

 $b
ightarrow s \mu^+ \mu^-$

 μ . μ V_{LQ} s

Important tree level effects

Important tree level effects

Can we resolve the *B* decay anomalies?

> $b \to s\mu^+\mu^-$ data can be explained at the 1σ level > $\mathcal{R}(X)/\mathcal{R}(X)_{SM} \approx 1.07$ (with $X = D, D^*, J/\Psi$)

Can we resolve the *B* decay anomalies?

MB, CRIVELLIN (2018)

Parameter scan:

$$\begin{split} M &= 3 \, \text{TeV} \\ 0.3 &< s_3^q < \sqrt{3}/2 \\ 0 &< s_2^q < 0.2 \\ 0.3 &< s_3^\ell < \sqrt{3}/2 \\ 0 &< s_2^\ell < 0.2 \\ 0 &< s_\ell < 0.3 \\ \text{imposing } D - \bar{D} \text{ mixing constraint} \end{split}$$

> $b \rightarrow s\mu^+\mu^-$ tension can be resolved > $b \rightarrow c\tau\nu$ tension can be ameliorated > observable rate for $\tau \rightarrow 3\mu$ predicted

Conclusions

- B decay anomalies still give one of the best hints for BSM physics
- > theoretically appealing common solution by $SU(2)_L$ singlet vector leptoquark
- possible UV-completion in terms of Pati-Salam model in the Randall-Sundrum background